Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups
نویسندگان
چکیده
منابع مشابه
Weakly Almost Periodic Functions and Thin Sets in Discrete Groups
A subset E of an infinite discrete group G is called (i) an Rw-set if any bounded function on G supported by E is weakly almost periodic, (ii) a weak p-Sidon set (1 ~ p < 2) if on II (E) the IP -norm is bounded by a constant times the maximal C·-norm of I\G) , (iii) a T-set if xE n E and Ex n E are finite whenever x of e, and (iv) an FT-set if it is a finite union of T-sets. In this paper, we s...
متن کاملINCLUSION RELATIONS CONCERNING WEAKLY ALMOST PERIODIC FUNCTIONS AND FUNCTIONS VANISHING AT INFINITY
We consider the space of weakly almost periodic functions on a transformation semigroup (S, X , ?) and show that if X is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of S on X, then every continuous function on X, vanishing at infinity is weakly almost periodic. We also use a number of diverse examples to show ...
متن کاملComplexity of Weakly Almost Periodic Functions
Given a topological group G let C(G) denote the Banach space of bounded, continous real valued function on G. Eberlein [1] defined a function f ∈ C(G) to be weakly almost periodic if the weak closure of all of its translates is compact in the weak topology on C(G) — in other words, if fx(y) is defined to be f(yx−1) then the weak closure of {fx | x ∈ G} is weakly compact. The set of weakly almos...
متن کاملVector-valued Means and Weakly Almost Periodic Functions
Department of Mathematics University of British Columbia Vancouver, B.C., Canada V6T lZ2 (Received June 30, 1992 and in revised form November 7, 1992) ABSTRACT. A formula is set up between vector-vMued mean and scMax-valued that enbles translate many important results about scalar-valued means developed in [1] to vector-valued means. As applications of the theory of vector-vMued means, .how tha...
متن کاملinclusion relations concerning weakly almost periodic functions and functions vanishing at infinity
we consider the space of weakly almost periodic functions on a transformation semigroup (s, x , ?) and show that if x is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of s on x, then every continuous function on x, vanishing at infinity is weakly almost periodic. we also use a number of diverse examples to show that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2016
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6883